

Symmetrion: Director International Symmetry Association: CEO Symmetry: Culture and Science: Founder and editor (1990-2008) Institute for Research Organisation Hungarian Academy of Sciences: Senior research fellow Golden section and symmetry in the history of science

Golden section:

Laws of nature: Symmetry principles: in the form of Variational principles Math. formulation of golden section: Laws and symmetry principles in parallel: (phyisics, crystallography, biology)

Decision in favour of Symmetry principles against Laws of nature (physics) From ancient times through the Renaissance to ... 17th c. 18th c. 19th c. 19th c. 20th c.

"Fibonacci phenomena"

Connection among three things:

> algebraic sequence of numbers

geometrical interpretation

Figure, denoting
 "the perfect proportion"

The connection among the three phenomena is not unambiguous for the pupils/students

We must explain it.

why symmetry?

Meaning of Symmetry

Allegory of Symmetry

<Greek>

συν + μετρ(ι)ος

[common measure of things]

συμμετρία [harmony, proportion]

D. Calvaert (1540–1619), Bologna (Museum of Fine Arts, Budapest graphics collection,, K.66.25.)

Symmetry phenomena

╋

- Reflection
- Rotation
- Translation
- **Glide reflection**
- Similitude

. . .

- Affine projection
- **Topological symmetries**
- Permutational symmetries

Why do we call all of them symmetries?

What are the common in the above listed phenomena?

They are so much different phenomena (and we have not listed all forms of symmetry).

> Why do we call all of them symmetries?

Geometrical concept of symmetry

 In each instance we performed some kind of (geometrical) operation (transformation).

 In this process, one or more (geometrical) characteristics (properties) of

the (geometrical) *figure* (object) remained unchanged. This characteristics
 proved to be
 invariant under the given transformation (did not change
 as a result of the
 operation performed).

Generalization of the concept of symmetry (1)

From harmony Platonic – to Aristotelian generalisation: perfection, beauty, truth, mean

Generalization of the concept of symmetry (2)

- not only for geometrical operations and
- not only for geometrical objects, and
- not just for geometrical characteristics

We generalise the geometrical meaning of symmetry in such a way that the interpretation be valid

Generalization of the concept of symmetry (3)

 in the course of any kind of (not necessarily geometrical) transformation (operation)

 at least one (not necessarily geometrical) characteristics of

- the affected

 (arbitrary and
 not necessarily geometrical) object

In a

generalised sense, we can speak of symmetry

if

remains invariant (unchanged).

Generalization of the concept of symmetry (4)

- to any transformation,
- to any object,
 - to any characteristics.

The generalization took place with reference to three things:

Why are the Fibonacci phenomena symmetries?

(1) Greek interpretation: harmony, the perfect proportion

Why are the Fibonacci phenomena symmetries?

(2a) algebra: $a_n = a_{n-1} + a_{n-2}$

(2b) Geometrical interpretation:

 repetitive rule of construction (algorhytm)

invariance under similitude transformation

Golden rectangle

Φ

Why are the Fibonacci phenomena symmetries?

(3) Generalised interpretation

E.g., quasicrystals, proportion of Penrose tiles, genetic matrices, fractal structure of ancient Mesoamerican art, ... The place of "Fibonacci phenomena" in shaping *interdiscplinary approach* and *holistic world view* of students in teacher training

Course annotation: <u>http://hps.elte.hu/oktaeder/atmeneti/darvas.htm#English</u>

Textbook/Monograph on <u>Symmetry</u> (Birkhäuser, 2007)

Why symmetry- and Fibonacci phenomena in teacher training?

They are exceptionally suitable for illustration:

 to include geometrical practices
 (e.g., golden section kaleidoscope, proportions in the perfect solids, ...)

Prismatic kaleidoscopes

Angles of Fedorov-type kaleidoscopes:

Tetrahedral kaleidoscopes

Producing kaleidoscopes by breaking up a cube:

Tetrahedral kaleidoscopes

Golden section kaleidoscope

Golden section kaleidoscope

Why symmetry- and Fibonacci phenomena in teacher training?

They are exceptionally suitable for illustration:

- to include geometrical practices

 (e.g., golden section kaleidoscope,
 proportions in the perfect solids, ...);
- to bring artistic examples in the math classroom

Why symmetry- and Fibonacci phenomena in teacher training?

They are exceptionally suitable for illustration:

- to include geometrical practices

 (e.g., golden section kaleidoscope,
 proportions in the perfect solids, ...);
- to bring artistic examples in the math classroom;
- to show their many interesting algebraic properties, what
 make the students like to learn mathematics (incl. algebra, geometry, trigonometry, analysis, numeric theory)

-- to seek for further symmetries (in sciences, in arts)

Course thematics

INTRODUCTORY LECTURES

INTERDISCIPLINARY EXAMPLES

APPLICATIONS IN THE PHYSICAL NATURE

BRIDGES TO THE MAN

BRIDGES TO THE HUMANITIES

(1) INTRODUCTORY LECTURES

- 1. The concept of symmetry, invariance, harmony.
- 2. Historic background.
- 3. Frieze patterns (groups), wallpaper patterns (groups), crystallographic groups. Symmetry in decorative art, space groups, crystal structures.
- 4. Golden section. Fibonacci sequences.

(2) INTERDISCIPLINARY EXAMPLES

- 5. The harmony of the built environment. Phillotaxis in the organic world.
- 6. The perfect solids: from Plato to the crystals.
- 7. That mysterious fivefold symmetry: from Dürer to the quasicrystals.
- 8. From the structure of viruses, through stability of built structures, to the Fullerene molecules.

(3) APPLICATIONS IN THE PHYSICAL NATURE

- 9. Cosmological symmetries.
- 10. Seeing and hearing: the harmony and physics of the world of colours and tones.
- 11. Generalisation of the concept of symmetry in physics. Symmetry breaking in the inanimate nature.

(4) BRIDGES TO THE MAN

- 12. Chirality. Morphological and functional symmetry breaking along the evolution of the organic matter.
- 13. Asymmetries of the human brain and its consequences. Symmetry in mathematical and logical thinking.

(5) BRIDGES TO THE HUMANITIES

14. The beauty and the truth. The emotional and rational functions of the human brain: arts, techné, science.

15. Rationality and impression: function and art in the works of art and technology in the 20th century.

Course annotation: <u>http://hps.elte.hu/oktaeder/atmeneti/darvas.htm#English</u>

Textbook/Monograph on Symmetry (Birkhäuser, 2007)

<u>Symmetry Festival 2006</u>: *Symmetry in Education*

Danke schön für Ihre Aufmerksamkeit