Mathematical Education meets Reality and Future

Prof. Dr. Ulrich Trottenberg, Director Fraunhofer Institute for Algorithms and Scientific Computing SCAI and Mathematical Institute, University of Cologne

Conference for "Raising Awareness about Inquiry Based Science and Mathematics Education (IBSME) in Europe"

Plenary Session "Relevance of mathematics and science education for society"

Bayreuth, September 21st, 2010

Contents

- 0. An Example: Data Compression
- 1. Mathematical education situation
- 2. Fraunhofer mission and approach
- 3. Why algorithms examples
- 4. Consequences, recommendations

Data Compression: JPEG and MP3

Contents

- 1. Mathematical education situation
- 2. Fraunhofer mission and approach
- 3. Why algorithms examples
- 4. Consequences, recommendations

The Image of mathematics (in Germany)

- difficult
- boring
- detached from reality

somewhat different in other countries

- France, Italy, …
- Scandinavia application oriented

theory oriented

Asia

seen as an intellectual playing field

- Anglo-America
- Latin America

The "MINT" problem

More than 100,000

- mathematicians
- computer scientists
- physicists, chemists, …
- engineers

missing in Germany

One reason: reservation against mathematics

Consequences, remedies

Change the

image of

perception of

interest in

mathematics (in Germany)

Change

mathematical education

Mathematics is both: abstraction and application

Breakthroughs in Pure Mathematics

- Four-Colour problem
- Mordell's conjecture
- Fermat's last theorem
- Poincare's conjecture

Impact on mathematical education?

Mathematics is both: abstraction and application

Applied Mathematics has drastically changed over the last 50 years:

- Penetration of science, technology and economy
- Basis for all technical developments
- Modeling, simulation, optimization, ...
- Applied Mathematics in society and everyday life: MP3, mobile phone, GPS navigation, online banking, search engines, …
- Revolution through computer development: algorithms replace formulae

Applied Mathematics in mathematical education

Applied Mathematics revolution

has little (no) impact on mathematical education, so far

Many teachers are not aware of this revolution

Applied Mathematics today

Breakthroughs in Applied Mathematics: algorithms

Algorithms versus hardware

Idea: Bring algorithms to school

Algorithms in mathematical education

Algorithms are everywhere today:

- MP3
- mobile phone
- GPS navigation
- online banking
- search engines

Contents

- 1. Mathematical education situation
- 2. Fraunhofer mission and approach
- 3. Why algorithms examples
- 4. Consequences, recommendations

The Fraunhofer* - Gesellschaft

- applied and industrially oriented research, of wide benefit to society
- founded in 1949
- annual budget 1.6 billion Euro
 - approx.40% industry funding40% project funding20% institutional funding
- international research centers
- 17,000 employees
- 59 R&D institutes

* Joseph von Fraunhofer (1787-1826) Researcher, Inventor, Entrepreneur

The Profile of the Fraunhofer-Gesellschaft

Mathematics and Information Technology

- Microelectronics
- Production
- Materials and Components
- Light & Surfaces
- Life Sciences
- Defense and Security

Applied Mathematics in Fraunhofer Mission: Innovation in technology, economy, life science, society

- Fraunhofer SCAI Algorithms and Scientific Computing Sankt Augustin, Cologne, Bonn Algorithms
- Fraunhofer ITWM Industrial Mathematics Kaiserslautern Modeling
- Fraunhofer MEVIS Medical Image Computing Bremen Visualization

Applied Mathematics today

"Multiphysics", e.g. fluid-structure-interaction: MpCCI (mathematical software product)

2010

Tacoma Narrows-Bridge 1940

Applied Mathematics today

Optimal cutting: AutoNester (mathematical software product)

Contents

- 1. Mathematical education situation
- 2. Fraunhofer mission and approach
- 3. Why algorithms examples
- 4. Consequences, recommendations

Algorithms versus hardware

Fraunhofer

Fast linear solvers (for large linear systems)

$$\sum_{j=1}^{N} a_{ij} x_j = b_i \quad (i = 1, ..., N)$$

N=3

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$$

 $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$
 $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$

$$8x_1 - 3x_2 + 3x_3 = 1$$

$$7x_1 + 9x_2 + 2x_3 = 1$$

$$2x_1 + 3x_2 - 5x_3 = 1$$

N in real applications: \approx 100 millions

Example: weather forecast

Euler equations

approximately 6.500 time steps for 10 days forecast

Climate prediction

EUROPE in a 600 km grid

Efficiency of some linear solvers

Example: 2D-Poisson-equation, discretized on 1024 x 1024 grid ~> linear system with about 1 million unknowns

Solver	Number of operations	Computing time on standard PC	Factor to MG
Gaussian elimination for band matrices	~ N ²	14 h	50000
SOR	~ N ^{1.5}	5 min	300
Multigrid	~ N	1 sec	1

Data compression: MP3

Data compression: MP3

mathematics

music

. . .

Fourier-transformation:

 $X(f) = \int_{-\infty}^{\infty} x(t) \cdot e^{-i2\pi ft} dt$

Discrete Fourier-transformation:

$$X(k) = \sum_{n=0}^{N-1} x(n) \cdot e^{-i2\pi kn/N}, k = 0, ..., N-1$$

(Source: Fraunhofer IIS and ITWM)

Data compression: MP3 - "Quantification"

mathematics

...

music

(Source: Fraunhofer IIS and ITWM)

Data compression: MP3 - What can we hear?

mathematics

music

(Source: Fraunhofer IIS and ITWM)

Data compression - store differences

How to store data, like 993, 1003, 1008, 997, 1004, 995, 1003, 997, 1001, 991, 997 efficiently?

Idea: store differences from 1000 (smaller numbers!) -7, +3, +8, -3, +4, -5, +3, -3, +1, -9, -3, ...

(Simplified) MP3 principle: differences from mean values (recursively)

Recursive multi-scaling: $f(x) \Rightarrow f(\lambda x)$

Wavelet

Algorithms in mathematical education: modules

MP3

- Fast linear solvers
- Tour planning
- Traffic simulation
- Cryptography (RSA-algorithm, prime numbers)

Development funded by WestLB Stiftung Zukunft NRW

Modules

MP3

- Fast linear solvers
- Tour planning
- Traffic simulation
- Cryptography (RSA-algorithm, prime numbers)
- GPS navigation
- Newton's method and bisection
- Sorting and searching
- Linear programming
- Chaos and fractals
- Exponential and logistic growth

Contents

- 1. Mathematical education situation
- 2. Fraunhofer mission and approach
- 3. Why algorithms examples
- 4. Consequences, recommendations

New role of mathematics

lateral thinking \Leftrightarrow transfer of ideas

Bring algorithms to school

Algorithms in mathematical education

Algorithms (modules) are building blocks in close to reality mathematical education

Modules tested and used in high schools:

- Multidisciplinary education combining mathematics and computer science
- Learn a simple programming language → e. g. Python
- Solve real problems from science and technology, in team work in different classes

Today's situation needs to be changed

Many teachers

- know little about the breakthroughs in Applied Mathematics
- don't know much about (and don't study) mathematical modeling, algorithms, numerics, differential equations, stochastics
- are not able to teach a simple programming language

Computers are used for surfing, mailing, skyping, playing games, facebooking but not for computing or problem solving

Today's situation needs to be changed

- provide teaching material (modules)
- train teachers
- extend curricula
- renovate school books
- change (extend) teachers' university studies

Multidisciplinary competence in mathematics, informatics, science and technology

Approach:

- deal with real problems (no fake- or pseudo-problems)
- discuss different mathematical models
- try to find your own algorithm
- write a computer program and test it (optionally)

Multidisciplinary competence in mathematics, informatics, science and technology

Students

- understand why mathematics is so important
- solve real problems
- enjoy inquiry-based work
- like to work with mathematical objects and structures

